KAM theory for the Hamiltonian derivative wave equation

نویسندگان

  • Massimiliano Berti
  • Luca Biasco
  • Michela Procesi
چکیده

We prove an infinite dimensional KAM theorem which implies the existence of Cantor families of small-amplitude, reducible, elliptic, analytic, invariant tori of Hamiltonian derivative wave equations. 2000AMS subject classification: 37K55, 35L05.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

KAM theory for the reversible derivative wave equation

We prove the existence of Cantor families of small amplitude, analytic, quasi-periodic solutions of derivative wave equations, with zero Lyapunov exponents and whose linearized equation is reducible to constant coefficients. This result is derived by an abstract KAM theorem for infinite dimensional reversible dynamical systems. 2000AMS subject classification: 37K55, 35L05.

متن کامل

A KAM Theorem for Hamiltonian Partial Differential Equations with Unbounded Perturbations

We establish an abstract infinite dimensional KAM theorem dealing with unbounded perturbation vector-field, which could be applied to a large class of Hamiltonian PDEs containing the derivative ∂x in the perturbation. Especially, in this range of application lie a class of derivative nonlinear Schrödinger equations with Dirichlet boundary conditions and perturbed Benjamin-Ono equation with peri...

متن کامل

The B"{a}cklund transformation method of Riccati equation to coupled Higgs field and Hamiltonian amplitude equations

In this paper, we establish new exact solutions for some complex nonlinear wave equations. The B"{a}cklund transformation method of Riccati equation is used to construct exact solutions of the Hamiltonian amplitude equation and the coupled Higgs field equation. This method presents a wide applicability to handling nonlinear wave equations. These equations play a very important role in mathemati...

متن کامل

Coupling between hyperbolic and diffusive systems: A port-Hamiltonian formulation

The aim of this paper is to study a conservative wave equation coupled to a diffusion equation. This coupled system naturally arises in musical acoustics when viscous and thermal effects at the wall of the duct of a wind instrument are taken into account. The resulting equation, known as Webster-Lokshin model, has variable coefficients in space, and a fractional derivative in time. This equatio...

متن کامل

Diffusive systems coupled to an oscillator: a Hamiltonian formulation

The aim of this paper is to study a conservative wave equation coupled to a diffusion equation : this coupled system naturally arises in musical acoustics when viscous and thermal effects at the wall of the duct of a wind instrument are taken into account. The resulting equation, known as Webster-Lokshin model, has variable coefficients in space, and a fractional derivative in time. The port-Ha...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2011